79 research outputs found

    Walking Toward a Convergence in Aging Research

    Get PDF

    Expression of CD74 is increased in neurofibrillary tangles in Alzheimer's disease

    Get PDF
    Alzheimer disease (AD) is a chronic neurodegenerative disease that is characterized by progressive memory loss. Pathological markers of AD include neurofibrillary tangles, accumulation of amyloid-β plaques, neuronal loss, and inflammation. The exact events that lead to the neuronal dysfunction and loss are not completely understood. However, pro-inflammatory cytokines, such as interleukin-1β, interleukin-6, and tumor necrosis factor α, are increased in AD, along with gene expression of major histocompatibility complex (MHC) class II molecules and macrophage migration inhibitory factor (MIF). MHC class II molecules are found in microglia of the brain, while MIF is found in both microglia and neurons of the hypothalamus, hippocampus, and cortex. MIF is not only a lymphocyte mediator but also a pituitary factor with endocrine properties and can mediate phosphorylation of the extracellular signal-regulated kinase-1/2 MAP kinases pathway. In this study, we looked at CD74, an integral membrane protein that acts as both a chaperone for MHC class II molecules as well as a receptor binding site for MIF. CD74 was recently found to be increased in microglia in AD cases compared to age-matched controls, but has not been reported in neurons. In our analysis, immunohistochemistry revealed a significant increase in CD74 primarily in neurofibrillary tangles, amyloid-β plaques, and microglia. This is the first finding to our knowledge that CD74 is increased in neurons of AD cases compared to age-matched control cases

    Increased isoprostane and prostaglandin are prominent in neurons in Alzheimer disease

    Get PDF
    BACKGROUND: Inflammation and oxidative stress are both involved in the pathogenesis of Alzheimer disease and have been shown to be reciprocally linked. One group of molecules that have been directly associated with inflammation and the production of free radicals are the prostaglandin 13,14-dihydro 15-keto PGF(2α )and the isoprostane 8-iso-PGF(2α). RESULTS: To further delineate the role of inflammatory and oxidative parameters in Alzheimer disease, in this study we evaluated the amount and localization of 13,14-dihydro 15-keto PGF(2α )and 8-iso-PGF(2α )in hippocampal post mortem tissue samples from age-matched Alzheimer disease and control patients. Our results demonstrate increased levels of 13,14-dihydro 15-keto PGF(2α )and 8-iso-PGF(2α )in the hippocampal pyramidal neurons of Alzheimer disease patients when compared to control patients. CONCLUSION: These data not only support the shared mechanistic involvement of free radical damage and inflammation in Alzheimer disease, but also indicate that multiple pathogenic "hits" are likely necessary for both the development and propagation of Alzheimer disease

    Experimental Models for Aging and their Potential for Novel Drug Discovery

    Get PDF
    An interesting area of scientific research is the development of potential antiaging drugs. In order to pursue this goal, it is necessary to gather the specific knowledge about the adequate preclinical models that are available to evaluate the beneficial effects of new potential drugs. This review is focused on invertebrate and vertebrate preclinical models used to evaluate the efficacy of antiaging compounds, with the objective to extend life span and health span. Research and online content related to aging, antiaging drugs, experimental aging models is reviewed. Moreover, in this review, the main experimental preclinical models of organisms that have contributed to the research in the pharmacol-ogy of lifespan extension and the understanding of the aging process are discussed. Dietary restriction (DR) constitutes a common experimental process to extend life span in all organisms. Besides, classical antiaging drugs such as resveratrol, rapamycin and metformin denominated as DR mimetics are also discussed. Likewise, the main therapeutic targets of these drugs include sirtuins, IGF-1, and mTOR, all of them being modulated by DR. Advances in molecular biology have uncovered the potential molecular pathways involved in the aging process. Due to their characteristics, invertebrate models are mainly used for drug screening. The National Institute on Aging (NIA) developed the Interventions Testing Program (ITP). At the pre-clinical level, the ITP uses Heterogeneous mouse model (HET) which is probably the most suitable rodent model to study potential drugs against aging prevention. The accelerated-senescence mouse P8 is also a mammalian rodent model for aging research. However, when evaluating the effect of drugs on a preclinical level, the evaluation must be done in non-human primates since it is the mammalian specie closest to humans. Research is needed to investigate the impact of new potential drugs for the increase of human quality o

    Steroidogenic Acute Regulatory Protein (StAR): Evidence of Gonadotropin-Induced Steroidogenesis in Alzheimer Disease

    Get PDF
    BACKGROUND: Alzheimer disease (AD) is clinically characterized by progressive memory loss, impairments in behavior, language and visual-spatial skills and ultimately, death. Epidemiological data reporting the predisposition of women to AD has led to a number of lines of evidence suggesting that age-related changes in hormones of the hypothalamic-pituitary-gonadal (HPG) axis following reproductive senescence, may contribute to the etiology of AD. Recent studies from our group and others have reported not only increases in circulating gonadotropins, namely luteinizing hormone (LH) in individuals with AD compared with control individuals, but also significant elevations of LH in vulnerable neuronal populations in individuals with AD compared to control cases as well as the highest density of gonadotropin receptors in the brain are found within the hippocampus, a region devastated in AD. However, while LH is higher in AD patients, the downstream consequences of this are incompletely understood. To begin to examine this issue, here, we examined the expression levels of steroidogenic acute regulatory (StAR) protein, which regulates the first key event in steroidogenesis, namely, the transport of cholesterol into the mitochondria, and is regulated by LH through the cyclic AMP second messenger pathway, in AD and control brain tissue. RESULTS: Our data revealed that StAR protein was markedly increased in both the cytoplasm of hippocampal pyramidal neurons as well as in the cytoplasm of other non-neuronal cell types from AD brains when compared with age-matched controls. Importantly, and suggestive of a direct mechanistic link, StAR protein expression in AD brains colocalized with LH receptor expression. CONCLUSION: Therefore, our findings suggest that LH is not only able to bind to its receptor and induce potentially pathogenic signaling in AD, but also that steroidogenic pathways regulated by LH may play a role in AD

    Neuronal cell cycle re-entry mediates Alzheimer disease-type changes

    Get PDF
    AbstractEvidence showing the ectopic re-expression of cell cycle-related proteins in specific vulnerable neuronal populations in Alzheimer disease led us to formulate the hypothesis that neurodegeneration, like cancer, is a disease of inappropriate cell cycle control. To test this notion, we used adenoviral-mediated expression of c-myc and ras oncogenes to drive postmitotic primary cortical neurons into the cell cycle. Cell cycle re-entry in neurons was associated with increased DNA content, as determined using BrdU and DAPI, and the re-expression of cyclin B1, a marker for the G2/M phase of the cell cycle. Importantly, we also found that cell cycle re-entry in primary neurons leads to tau phosphorylation and conformational changes similar to that seen in Alzheimer disease. This study establishes that the cell cycle can be instigated in normally quiescent neuronal cells and results in a phenotype that shares features of degenerative neurons in Alzheimer disease. As such, our neuronal cell model may be extremely valuable for the development of novel therapeutic strategies

    The X-chromosome instability phenotype in Alzheimer's disease: A clinical sign of accelerating aging?

    Get PDF
    Premature centromere division, or premature centromere separation (PCS), occurs when chromatid separation is dysfunctional, occurring earlier than usual during the interphase stage of mitosis. This phenomenon, seen in Robert's syndrome and various cancers, has also been documented in peripheral as well as neuronal cells of Alzheimer's disease (AD). In the latter instances, fluorescent in situ hybridization (FISH), applied to the centromere region of the X-chromosome in interphase nuclei of lymphocytes from peripheral blood in AD patients, demonstrated premature chromosomal separation before mitotic metaphase directly after completion of DNA replication in G(2) phase of the cell cycle. Furthermore, and perhaps unexpectedly given the presumptive post-mitotic status of terminally differentiated neurons, neurons in AD patients also showed significantly increased levels of PCS of the X-chromosome. Taken together with other phenomena such as cell cycle re-activation and ectopic re-expression of cyclins and cyclin dependent proteins, we propose that AD is an oncogenic phenotype leading to accelarated aging of the affected brain

    The role of oxidative stress in the pathogenesis of Alzheimer's disease

    Get PDF
    [ES]: La presencia de estrés oxidativo es la característica más temprana de la Enfermedad de Alzheimer (EA), lo cual proporciona un atractivo objetivo para intervenciones terapéuticas. Entre los mayores retos que se presentan actualmente están el establecimiento de la fuente de estrés oxidativo y la determinación de cómo este proceso puede influir en la etiología de la Enfermedad de Alzheimer. Este es un tema complejo, pues varios procesos, enzimáticos y no-enzimáticos, están implicados en la formación de oxígeno reactivo y otras moléculas tóxicas. En este artículo discutimos el progreso en el entendimiento de estos procesos[EN]: Oxidative stress is the earliest feature of Alzheimer disease and an attractive therapeutic target. One of the major challenges today is to establish the source of the reactive oxygen and to determine the role of oxidative stress in the etiology of Alzheimer disease. This is a complex issue since a variety of enzymatic and non-enzymatic processes are involved in the formation of reactive oxygen and other toxic molecules. In this review, we discuss progress in the understanding of these processes.Peer reviewe

    Metabolite Profiling of Alzheimer's Disease Cerebrospinal Fluid

    Get PDF
    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive loss of cognitive functions. Today the diagnosis of AD relies on clinical evaluations and is only late in the disease. Biomarkers for early detection of the underlying neuropathological changes are still lacking and the biochemical pathways leading to the disease are still not completely understood. The aim of this study was to identify the metabolic changes resulting from the disease phenotype by a thorough and systematic metabolite profiling approach. For this purpose CSF samples from 79 AD patients and 51 healthy controls were analyzed by gas and liquid chromatography-tandem mass spectrometry (GC-MS and LC-MS/MS) in conjunction with univariate and multivariate statistical analyses. In total 343 different analytes have been identified. Significant changes in the metabolite profile of AD patients compared to healthy controls have been identified. Increased cortisol levels seemed to be related to the progression of AD and have been detected in more severe forms of AD. Increased cysteine associated with decreased uridine was the best paired combination to identify light AD (MMSE>22) with specificity and sensitivity above 75%. In this group of patients, sensitivity and specificity above 80% were obtained for several combinations of three to five metabolites, including cortisol and various amino acids, in addition to cysteine and uridine
    corecore